<u>Red Cell Membrane</u>

THE RED BLOOD CELL

Three aspects of red cell metabolism are crucial for normal erythrocyte survival and function:

- 1-The red blood cell **membrane**
- 2-Haemoglobin structure and function
- 3-Active red cell metabolic pathways

THE RED CELL MEMBRANE

The red cell membrane consists of a bipolar lipid layer supported by structural proteins.

50% of the membrane is protein (inner layer).

40% is lipid (middle layer)

10% is carbohydrate.(outer layer).

Structure of the red cell membrane.

<u>1-Middle Lipid bilayer (40%)</u>

A- Hydrophilic:

60% phospholipid

10% glycolipids.

B- Hydrophobic:

30% neutral lipids (mainly cholesterol)

The phospho- and glycolipids are structural with polar groups

(hydrophilic) on the external and internal surfaces of the cell.

Non-polar groups (**hydrophobic**) form a barrier at the centre of the membrane.

Phospholipids:

-Their non polar fatty acids at the centre of the membrane, facing each other & r attracted by hydrophobic forces (**so can't permit H20 to leak in-between lipid bilayer**).

-Polar F.A. (hydrophilic) on the external & internal surfaces interacting e' aqueous phase of environment (plasma, Hb).

Cholesterol:

- It is arranged between phospholipid molecules.
- Ratio between cholesterol & phospholipids determine fluidity & deformability of cell membrane (†cholesterol, †membrane rigidity).
- It is present in non esterified form w' is exchangeable e' that in the plasma:
- So in starvation: \downarrow plasma cholesterol, & so RBCs cholesterol \downarrow
- In liver diseases ,or e'↓ LCAT, ↑ non estrified cholesterol , ↑ free cholesterol in plasma & RBCs → ↑ surface area → ↑ target cells.

N.B:

- Retics r the last stage capable of lipid synthesis, so mature RBCs depend on lipid exchange e' plasma for their fluidity.
- Fluidity of lipid bilayer depends on:
- 1-Cholesterol content: if $\blacklozenge \rightarrow \downarrow$ fluidity.
- 2-F.A: unsaturated $\rightarrow \uparrow$ fluidity
 - saturated $\longrightarrow \downarrow$,,
- 3- Temperature
- 4-lipid bilayer is incompressible:
- ↑ cholesterol → \uparrow surface area → \uparrow target cells.

2-Outer CHO layer (10%):

Consists of glycoproteins or glycolipids w' ve their protein base in the lipid bilayer carrying blood group antigens e.g: P, ABH & lewis Ag.

3-The inner protein layer: (50%):

Divided into: Skeletal protein Integral (functional) protein

A- Skeletal protein:

- Spectrin
- Actin
- Band 4.1
- Spectrin:
- Is the most abundant protein of skeletal proteins
- Formed of diamers (2 α, 2β chains) wound around each other in a heterodiamer connecting at their heads (head to head connection) & ends in a tetramer linked to actin & 4.1 & integral protein (adducin) {

Horizontal interaction}.

- Spectrin is arranged in 2 webs linked to inner surface of lipid layer.
- Spectrin-ankyrin-band 3 complex : links skeletal to non skeletal proteins inside the lipid bilayer.

B- Non skeletal proteins (Integral):

• They r functional ptn.

1- Band 3:

- Transport anions Cl-, HC03
- Carry ABH , Ii blood gp Ags

2-Glycophorins:

- A: carry MNS Ags
- B: carry Ss Ags
- C: attachment site to cytoskeleton
- Its $\downarrow \rightarrow$ elliptocytosis
- **3-Band 4.5:** Transports glucose.

Subnormal spectrin produces spherocytes or elliptocytes.

Macro-Molecular assembly of membrane proteins

A-Horizontal Interaction

elation between skeletal protein & peripheral protein (1 of the functional ptn) \rightarrow Adducin \longrightarrow This is responsible for membrane stability & structural integrity: any defect \rightarrow Loss of structural integrity \longrightarrow membrane destabilization:

mild: **Elliptocytosis** severe: **fragmentation**

B-Vertical Interaction:

Interaction between skeletal ptn & integral ptn & phospholipids responsible for stabilization of lipid bilayer & prevention of its loss from membrane

Abnormalities of red cell membrane

1- Congenital:

- Spherocytosis
- Elliptocytosis
- Stomatocytosis

2-Acquired:

- PNH
- Liver disease

<u>1-Spherocytosis</u>

Hereditary spherocytosis: due to membrane defect

Acquired spherocytosis: AIHA (warm Ab) (detected by coomb's test).

Hereditary Spherocytosis

It is characterized by:

- Familial disorder (mainly AD, but rarely AR)
- NNA
- H.A
- Spherocytes in P.B
- † O.F
- Splenomegaly
- Anaemia is corrected by splenectomy

Pathogenesis:

- Intrinsic membrane defect
- Selective retention of these cells by N spleen
- 2ry membrane changes.

<u>1- Intrinsic membrane defect:</u>

A- membrane protein:

Four abnormalities in red cell membrane proteins have been identified and include

- (1) spectrin deficiency alone,
- (2) combined spectrin and ankyrin deficiency,
- (3) band 3 deficiency, and
- (4) protein 4.2 defects.

Spectrin deficiency is the most common defect.

Spectrin deficiency due to \checkmark synthesis \rightarrow unstable spectrin

defective spectrin binding to ankyrin \rightarrow disturbance in the vertical interaction between:

Spectrin, ankyrin & band $3 \rightarrow loss$ of lipid bilayer in the form of microvescicles $\rightarrow 4$ surface area \rightarrow spherocytes.

B-↓membrane lipids:

2- 2ry membrane changes :

↓ K+ & H2O→ dehydrated cells

- Intracellular Na+→ lysis
- Na+/K ATPase → ★ATP

3- Role of Spleen:

Spherocytes r less deformable than N cells e' in their viscosity & \downarrow in their content of ATP

So they can't tolerate their passage through sinuses & cords , \downarrow O2 & \downarrow glucose in media of spleen.

This will result in their partial phagocytosis by MQ of spleen \rightarrow more \checkmark in surface area \rightarrow 2ry spherocytes (smaller than original spherocytes).

Clinical Picture:

Of H.A (see before).

Diagnosis:

A-3 Evidence : ↑ destruction,

production,

↓life span of RBCs.

B- CBC:

- ↓Hb
- **†** Retics : 5-20%
- Microspherocytes (densely stained, no central pallor, smaller in diameter).
- **†** MCHC

C-Special tests:

1- Osmotic fragility test:

These cells r osmotically fragile where haemolysis starts earlier than Normal cells e' double population of cells resulting in the presence of tail & O.F ended by tailing due to \uparrow retics (resist haemolysis).

2-Autohaemolysis test:

Cells incubated in their own plasma e' & e'out glucose for 48 hs, degree of haemolysis is measured.

If the haemolysis \uparrow & corrects by glucose means there was \downarrow ATP

3- Glycerol lysis test:

The same principal as O.F. test.

4- Direct coomb's test:

D.D from AIHA coomb's +ve, H.S : coomb's -ve

Ttt:

Blood transfusion in severe cases.

Splenectomy: cures anaemia, as RBCs life span returns N.

2-Hereditary Elliptocytosis (Ovalocytosis)

It is a hereditary disorder of RBC membrane ch by the presence of elliptical (elongated) cells in P.B.

H.E is divided into :

- Common HE
- Spherocytic HE e' OF
- Stomatocytic HE

Common HE:

Pathogenesis:

Defect in RBCs membrane protein skeleton (mainly spectrin),

evidenced by :

- \uparrow thermal instability (normal cells can withstand temp. up to 50%).
- Disintegration of skeleton by shear stress.
- Defect in self association of spectrin diamers to form tetramers.
- Altered susceptibility of spectrin to trypsin digestion.
- ↓ 4.1 protein.

It is always ass. e' mutation in glycophorin C.

Defect in skeletal protein (Horizontal interaction: actin, spectrin, band 4.1 or adducin) \rightarrow Loss of structural integrity \rightarrow membrane destabilization:

mild: Elliptocytosis

severe: fragmented cells

Inheritance: AD

C/P:

1-Asymptomatic carrier state: diagnosed by biochemical detection of membrane defect (during research).

2-Minimal & mild HE: diagnosed by:

Presence of elliptical cells in CBC

No clinical evidence of haemolysis

Compensated H.A.

3-HE e' transient haemolysis:

Haemolysis usually ppt. by viral, bact, protozoal infections, pregnancy.

4- Chronic H.A: (C/P of H.A).

Lab diagnosis:

1-3 evidence

2-CBC: mild NNA

elliptical cells : 15-100%

3-Special tests:

i-O.F:

in spherocytic HE

in severe HE due to: small & fragmented cells

ii-Thermal instability

Denaturation of spectrin at 45-46 °C (N at 50 °C).

Ttt:

Splenectomy if there is haemolysis.

3-Other membrane abnormalities

A-Acantocytosis

Red cells e' irregular projections vary in: length, width & distribution.

RBCs develop N in BM, then acquire that shape in plasma.

Causes:

Due to \uparrow lipids in outer leaflet > inner leaflet in the lipid bilayer.

1-Liver diseases:

Due to \uparrow cholesterol in the outer leaflet \rightarrow expansion of its surface area in relation to inner leaflet \rightarrow projections \rightarrow severe H.A e' acantocytosis& target cells in P.B.

2-Abetalipoproteinaemia: due to **↑** sphingomylein.

3- Chorea: due to ↑ saturated FA→ ↓ fluidity (Acantocytosis syndrome).

4-Mc Load phenotype:

RBCs lack Kx antigen, it s sex linked.

Acantocytosis

Table: causes of acantocytosis:

Congenital	Acquired
Abetalipoproteinaemia	Severe liver diseases
McLoad phenotype	MDS
PK deficiency	Neonatal vit E def.

B- + Lecithin Cholesterol Acetyl Transferase (L-CAT)

L-CAT transfers FA from phosphatidyl choline to cholestrol \longrightarrow esterified cholesterol.

 \downarrow L-CAT \rightarrow \blacklozenge unesterified cholesterol

If in both leaflets : target cells

If in outer leaflet only: Acantocytosis \rightarrow mild compensated H.A.

C-Xerocytosis

Loss of K+ e'out Na+ gain \rightarrow \downarrow H2O \rightarrow dehydrated cells \rightarrow

↓ MCV, ↑MCHC.

D- Stomatocytosis

RBCs contain a wide transverse slit or stroma

Pathogenesis:

↑ Na+ & H2O ↑ MCV, \downarrow MCHC→ mod. to severe anaemia.

Causes:

Congenital:

Due to ineffective Na+/K+ pump mechanism.

Acquired: malignant neoplasms, CVS disease, alcohol & drugs.

C/P: mod to severe H.A, 10-30% stomatocytes in P.B, present e' Rh null & McLoad phenotype.

Hereditary stomatocytosis red cell slide.

Flatt J F , Bruce L J Haematologica 2009;94:1039-1041

©2009 by Ferrata Storti Foundation

haematologica the hematology journal